EMMY WATCII VINTAGE RESTORATIONS

Citizen 0510A Movement Parts (1)

TECHNICAL INFORMATION

§1. OUTLINE 1
§2. SPECIFICATIONS 1
§3. MAIN COMPONENTS 2
§4. SETTING THE WATCH 2
§5. SETTING THE DATE 3
§6. CHRONOGRAPH OPERATION 3
§7. ADJUSTING THE CHRONOGRAPH 4
§8. TACHYMETER 5
§9. AFTER CHANGING THE POWER CELL 5
§10. ARRANGEMENT OF WHEELS ON DIAL SIDE 6
§11. DISASSEMBLY AND ASSEMBLY OF THE MODULE7
§12. TROUBLESHOOTING AND ADJUSTMENT 10
I: V V V W ITTC.II

§1. OUTLINE

CAL. 0510\%
CAL. 0540\%
CAL. 0560\%
Analog quartz watch having a chronograph (Hour, minute, second) and a calendar.
Analog quartz watch having a chronograph (Minute, second) and a calendar.
Analog quartz watch having a chronograph (Hour, minute, second, $1 / 20$ second) and a calendar.

§2. SPECIFICATIONS

Cal. No.		0510A-00	0540A-00	0560A-00
Type		Analog quartz watch		
$\begin{aligned} & \text { 요 } \\ & \text { 둘 } \\ & \text { 포 } \end{aligned}$	Time system	Hour, minute, and small second hands	24-hour, hour, minute, and small second hands	Hour and minute hands
	Chronograph system	Hour, minute, and second hands	Minute and second hands	Hour, minute, second, and $1 / 20$ second hands
Module size (mm)		ø29.1 $\times 4.1$ t		
Accuracy		-I. ${ }^{ \pm 20 \mathrm{sec} / \text { month at } 5^{\circ} \mathrm{C} \text { to } 35^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F} \text { to } 95^{\circ} \mathrm{F}\right)}$		
IC		C/MOS-LSI, 1 unit		
Operating temperature range		$-10^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 140^{\circ} \mathrm{F}\right)$		
Converter VTIN				Bipolar step motor, 3 units
Time adjustment		impossible		
Measurement gate		10 sec		
	Calendar (With quick setting device)	Date		
	Chronograph			
	Measurement unit	1 sec		1/20 sec
	Max. measurement indication	$11 \mathrm{~h}, 59 \mathrm{~min}, 59 \mathrm{sec}$	$59 \mathrm{~min}, 59 \mathrm{sec}$	$11 \mathrm{~h}, 59 \mathrm{~min}, 59 \mathrm{sec}, 95$
$\begin{aligned} & \overline{\mathrm{o}} \\ & 0 \\ & 0 \\ & \text { o } \\ & 0 \end{aligned}$	Part No. (Power cell No.)	280-44 (SR927W)		
	Nominal voltage/ Nominal capacity	$1.55 \mathrm{~V} / 60 \mathrm{mAH}$		
	Life time	Approx. 2 years		

§3. MAIN COMPONENTS

§4. SETTING THE WATCH

1. Wait till small second hand is on " 0 " sec, then crown to position (2) it stops the small second hand.
2. Turn the crown to set the minute/hour hands to the desired time.

* The 24 -hour hand is synchronized with the hour hand. <0540>
Use the 24 -hour time display as a reference to confirm a.m. and p.m. setting.

3. To start the small second hand, push the crown back to position (0).

* Reduction of power consumption: crown at (2) movement stop.

1. Pull the crown out to position (2).
2. Turn the crown to set the minute/hour hands to the desired time.
3. Push the crown back to position (0).

* Reduction of power consumption: crown at (2) movement stop.

§5. SETTING THE DATE

0150, 0540, 0560

1. Pull out the crown to position (1).
2. Turn the crown until the desired date appears.

* Do not set the date between 9:00 PM and 1:00 AM otherwise, the date may not change properly.

3. The crown back to position (0) after set the date.

§6. CHRONOGRAPH OPERATION

The chronograph can measure up to 60 minutes in one second increments.

Accumulated elapsed time measurement

The chronograph can measure up to 12 hours in $1 / 20(0.05)$ second increments.
Standard measurement
$\underset{(A)}{\text { START }} \rightarrow \underset{(A)}{\text { STOP }} \rightarrow \underset{(B)}{\text { RESET }}$

Accumulated elapsed time measurement

The $C \bullet G 1 / 20$ second hand will still indicate the correct time measurement even when the chronograph is started by pressing button(A) while the $C \bullet G 1 / 20$ second hand is functioning as one step movement.
The C•G $1 / 20$ second hand automatically stops at 00 second position 30 seconds after the chronograph is started.
When the chronograph is stopped by the (A) button, the C•G $1 / 20$ second hand indicates the elapsed time.
When the (B) button is pressed again after the chronograph has been reset, the C•G $1 / 20$ second hand start to function as one step movement to confirm watch operation.

* The hour/minute hands indicate the current time even when the chronograph is being used.

§7. ADJUSTING THE CHRONOGRAPH

If the chronograph hands do not return to " 0 " position when the chronograph is reset.

1. Pull out the crown to position (2) and then press button (A).

Adjusting the $C \bullet G$ second hand to " 0 " position.

* This second hand move quickly if the button (A) is pressed continuously.

2. Preșs the button (B) to reset minute/hour hands to " 0 " position.
3. Set the watch to current time.
4. Push the crown back to position (0).

5. Pull out the crown to position (2), and the press button (A).

Adjusting the $C \bullet G$ second hand to " 0 " position

* This second hand move quickly if the (A) button is pressed continuously.

2. Pull out the crown to position (2), and then press button (B).

Adjusting the $C \bullet G 1 / 20$ second hand at " 0 " position.

* This C•G $1 / 20$ second hand moves quickly if the button (B) is pressed continuously.

3. Set the watch to current time.
4. Push the crown back to position " 0 ".
5. Press the button (B) to reset minute/hour hands to " 0 " position.

§8. TACHYMETER

The tachymeter is the device which measures the speed of an automobile.
Knowing is how many seconds the car covers a distance of 1 km , the meter can measure the approximate average speed per hour during a journey (up to the maximum measurable range of tachymeter is 60 seconds.)

If the chronograph is started at the same time as measurement, and stopped after 1 km , the average speed per hour can be determined according to the position of the second hand.
If the car covers the distance of 1 km in 45 seconds, the average hourly speed during the journey will be about 80 km .

§9. AFTER CHANGING THE POWER CELL (CAL. 0560)

After changing the power cell, please refer to the "Adjusting the Chronograph" section and set the correct hand position prior to use.

* This operation is required because the chronograph hands may not return to the 0 position when the chronograph is reset after changing the power cell.

§10. ARRANGEMENT OF WHEELS ON DIAL SIDE

CAL NO. 0510

* All parts other than the above two parts are the same as CAL. 0510. The hour-recording wheel and intermediate hour-recording wheels(I), (II), and (III) of CAL. 0510 are not installed, however.
* All parts other than the above three parts are the same as CAL. 0510. The second wheel of CAL. 0510 is not installed, however.

§12. TROUBLESHOOTING AND ADJUSTMENT

Check items	Method	Results and repair procedure
(1) Measurement of power cell voltage	* Refer to Technical Manual, Basic Course II-1-a for the setting procedure of the tester. <Tester range: DC 3V>	- Over 1.5 V \rightarrow Non-defective - Under 1.5 V \rightarrow Replace the power cell
(2) Check of output signal	* Refer to Technical Manual, Basic Course II-1-b for the setting procedure of the tester. This watch outputs the following signals. - Output signals ($\mathrm{A} 1 \Omega, \mathrm{~A} 2 \Omega$) of the time system (Second, minute, and hour) - Output signals ($\mathrm{A} 3 \Omega, \mathrm{~A} 4 \Omega$) of the chronograph system (Second, minute, and hour) - Output signals ($A 5 \Omega, A 6 \Omega$) of the $1 / 20-$ sec chronograph system ... CAL. 0560 If the watch stops, check the output signals $A 1 \Omega$ and $A 2 \Omega$ among the above signals. * Confirm that the crown is at the normal position (0 stage).	Output signals of A1 and A2 - Tester pointer moves to right and left from OV every 1 sec . \rightarrow Normal - Tester pointer does not moves. \rightarrow Replace electronic circuit unit.
(3) Check of connection part	* Refer to the analog part of Technical Manual, Basic Course II-2-a.	

Check items	Method	Results and repair procedure
(4) Measurement of coil resistance	* Refer to Technical Manual, Basic Course II-1-c for the setting procedure of the tester.	1) Measurement of coil unit - $1.7 \mathrm{k} \Omega \sim 2.5 \mathrm{k} \Omega$ \rightarrow Non-defective - Out of $1.7 \mathrm{k} \Omega \sim 2.5 \mathrm{k} \Omega$ \rightarrow Replace of coil unit
© Check of train wheel	* Refer to Technical Manual, Basic Course II-2-b.	
© Check of indicating mechanism	- Check the hour wheel, minute wheel and pinion, and second wheel and pinion. \qquad	C_{1}^{1}
$(7$ Check of output signals of $\mathrm{C} \bullet \mathrm{G}$	* For the setting method of the tester, see Basic Section II-1-b. - Check the output signals ($\mathrm{A} 3 \Omega, \mathrm{~A} 4 \Omega$) to drive the step motor for the second, minute, and hour hands of the chronograph (Common to all CAL. 05 series). - Check the output signals ($\mathrm{A} 5 \Omega, \mathrm{~A} 6 \Omega$) to drive the step motor for the $1 / 20 \mathrm{sec}$ chronograph (CAL. 0560). (Measuring method) Before measuring any of the above signals, start the chronograph. Since the output signal of the $1 / 20$ sec chronograph stops 30 seconds after the start, measure itin this 30 seconds.	a. Output signals of chronograph (Second, minute, and hour) - Tester pointer moves to right and left from OV every 1 sec . \rightarrow Normal - Tester pointer does not move. \rightarrow Replace electronic circuit unit. b. Output signals of $1 / 20-\mathrm{sec}$ chronograph (CAL 0560) - Tester pointer jitters at OV. \rightarrow Moves little by little/bit by bit. - Tester pointer does not move. \rightarrow Replace electronic circuit unit.

Check items	Method	Results and repair procedure
(8) Check of switch mechanism of buttons (A) and (B)	1) Confirm that the buttons (A) and (B) operate smoothly and check the switch springs of (A) and (B) for deformation. 2) Check the part between the switch springs and pattern of the electronic circuit unit of dirt and dust. 3) Confirm that the fly-back connection lever, stop lever, and flay-back lever are installed normally.	1) Buttons do not move smoothly. - Dust or dirt \rightarrow Clean. - Supply oil to push button packings again. - Deformation \rightarrow Replace parts. 2) Dust or dirt \rightarrow Clean
0 Check of train wheel of chronograph	* Refer to Technical Manual, Basic Course II-2-b.	
(1) Check of connecting part of chronograph	* Refer to Technical Manual, Basic Course II-2-a. ,	
(1) Measurement of coil resistance of chronograph	* Refer to Technical Manual, Basic Course II-1-c for the setting procedure of the tester. (Note that CAL. 0560 has also the coil of the $1 / 20-\mathrm{sec}$ chronograph.) Coil of $1 / 20-$ sec chronograph	Coil of chronograph - $1.7 \mathrm{k} \Omega \sim 2.4 \mathrm{k} \Omega$ \rightarrow Normal - Out of $1.7 \mathrm{k} \Omega \sim 2.4 \mathrm{k} \Omega$ \rightarrow Replace coil of chronograph. Coil of $1 / 20-\mathrm{sec}$ chronograph - $1.9 \mathrm{k} \Omega \sim 2.6 \mathrm{k} \Omega$ \rightarrow Normal - Out of $1.9 \mathrm{k} \Omega \sim 2.6 \mathrm{k} \Omega$ \rightarrow Replace coil of $1 / 20-\mathrm{sec}$ chronograph.
(12) Measurement/ adjustment of time rate	* Refer to Technical Manual, Basic Course II-2-d.	
(13) Confirmation of using condition of watch	* Refer to Technical Manual, Basic Course II-2-e.	

Check items	Method	Results and repair procedure
(4) Measurement of current consumption	* Refer to Technical Manual, Basic Course II-1-f for the setting procedure of the teste. 1. Measurement of normal time display 2. Measurement while chronograph is operating * Set the tester and measure the current similarly to 1. 1) In case of CAL. 0510, and 0540 Select the tester range of $10 \mu \mathrm{~A}$ or $12 \mu \mathrm{~A}$. 2) In case of CAL.560E RESTORAT Select the tester range of 1 mA or $600 \mu \mathrm{~A}$. <Measuring method> Push the switch corresponding to the button (A) to start the chronograph hands (to drive the chronograph train wheel), the measure the current. Since the $1 / 20$ sec chronograph hand of CAL. 0560 stops 30 seconds after the start, measure the current in this 30 sec onds. 3. Measurement of electronic circuit unit * Set the tester similarly to 1 .	1. Normal time display - Under $1.6 \mu \mathrm{~A}$ \rightarrow Non-defective - Over $1.6 \mu \mathrm{~A}$ \rightarrow Measure the electronic circuit unit separately. 2. While chronograph is in operation 1) CAL. 0510,0540 - Under $3.8 \mu \mathrm{~A}$ \rightarrow Non-defective - Over $3.8 \mu \mathrm{~A}$ \rightarrow Measure electronic circuit unit. 2) CAL. 0560 - Under $160 \mu \mathrm{~A}$ \rightarrow Non-defective - Over $160 \mu \mathrm{~A}$ \rightarrow Measure electronic circuit unit. 3) Measrement of electronic circuit unit - Under $0.3 \mu \mathrm{~A}$ \rightarrow Non-defective - Over $0.3 \mu \mathrm{~A}$ \rightarrow Replace the electronic circuit unit.
(1) Check of appearance and functions	* Refer to Technical Manual, Basic Course II-2-f.	

